一、论坛日期:2023年7月27日(星期四)
二、论坛时间:14:00-17:30
三、论坛地点:明德楼B区201-1学术报告厅
四、论坛安排:
Ø14:00-14:10 开幕式致辞
Ø14:10-15:00 学术报告
题目:关于Stefan型问题的广义解的连续性
报告人:廖乃安
摘要:Stefan问题描述物态变化过程中的温度。该问题的广义解在1960年代初被Kamin和oleinik引入,但广义解是否连续的问题却悬而未决。该问题在1980年代初由Caffarelli-Evans,DiBenedetto等人给出肯定回答。但是,连续模的最佳估计依然不得而知。本报告将介绍这方面最新的一些工作.
Ø15:00-15:10 交流讨论
Ø15:10-15:30 休息
Ø15:30-16:20 学术报告
题目:Counting l-adic local systems over a curve
报告人:余红杰
摘要:In 1981, Drinfeld enumerated the number of irreducible l-adiclocal systems of rank two on a projective smooth curve fixed by theFrobenius endomorphism. Interestingly, this number looks like the numberof points on a variety over a finite field. Deligne proposed conjectures toextend and comprehend Drinfeld's result. In this talk, I will presentDeligne's conjectures and discuss some mysterious phenomena that haveemerged in various cases where this number is related to the number ofstable Higgs bundles.
Ø16:20-16:30 交流讨论
Ø16:30-17:20 学术报告
题目:Asymptotic behavior of the heat semigroup on Riemannian manifolds
报告人:张鸿伟
摘要:Consider the heat equation with L1 initial data. In the Euclideansetting, the solution to the heat equation approaches, as time tends to infinity,the product of the initial data's mass and the heat kernel. This can be seen asthe PDE version of the Central Limit Theorem. When dealing with moregeneral Riemannian manifolds, analogous heat asymptotics are affected bythe underlying geometry. In this talk, we will give an overview of recentdevelopments on this topic. We will see that such a long-time convergenceresult holds for some positively curved manifolds, but fails for somenegatively curved manifolds, unless one adds additional assumptions on theinitial data. Joint works with Jean-Philippe Anker (Orléans), AlexanderGrigor’yan (Bielefeld), and Effie Papageorgiou (Crete).
Ø17:20-17:30 交流讨论